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1. Introduction

Metabolomics requires, and relies on, the ability to make sta-
tistically meaningful comparisons of the data for large numbers of
variables from diverse samples that may have been acquired and/or
analyzed at different times. For this to be feasible the total variance
ust be carefully controlled and ideally limited to that due to the
ffect being studied. This prospect is especially daunting given the
umber of experimental steps involved, each of which can intro-
uce variance that may not always be understood or characterized.

Regardless of the analytical technique used, it is widely under-
tood that particular care must be taken with sample collection,
torage and preparation, and that it is essential (but often forgotten)
o randomize the sample order prior to data acquisition to minimize
nstrument effects [1]. For LC–MS using electrospray ionization,
ne well-known effect is ion suppression where a high-abundance
nalyte reduces, or eliminates, the response for a weaker analyte.
his was studied by Bottcher et al. [2] who concluded, using the
omenclature of Matuszewski [3], that significant absolute matrix
ffects can occur but relative effects are usually small enough to
llow meaningful comparison. Surprisingly, the latter report also
escribed the possibility of ion enhancement in real matrices rela-
ive to standards made up in pure solvent which, being unexpected,

ight be hard to distinguish from an up regulated biomarker.
nstrument response changes are also well known and a num-
er of compensating experimental strategies have been described.
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f a metabolomics study can cause uncontrolled variance that is not related
udied and may distort or obscure the data analysis. While some sources
perimental techniques and careful sample handling, others are inherent
and cannot easily be avoided. We discuss the sources and appearance of

w ways in which they can be detected using visualization and statistical
tment prior to multivariate analysis (MVA).

© 2008 Elsevier B.V. All rights reserved.

Normalization to one or more internal standards is common in bio-
analysis, and Sysi-Aho et al. [4] have described an approach using
multiple internal standards including a method to select the opti-
mum standard to be used with any particular analyte. Response
changes are particularly important in large-scale, long-term stud-
ies where the samples cannot be run in a single batch and may not
even be run on the same instrument. A popular strategy in these
cases is to use a QC sample obtained by pooling all the analytical
samples [5–7] with internal standards and/or a test mixture. The
QC sample is injected periodically and used to define intra-batch
response curves [6] that can then be used to adjust the response

of the analytical samples. The internal standards can also be used
for inter-batch response correction and the test mixture to ensure
that no gross chromatographic changes have occurred [7] during
the batch.

These effects, however, are not the only phenomena that can
be introduced by LC–MS; others can be related to the autosampler,
such as carryover and sample stability, the LC system (retention
time shifts, response changes, contamination build up or wash out)
as well as the mass spectrometer (mass shifts, resolution changes),
etc. Somewhat surprisingly, however, there seems to have been rel-
atively little mention in the literature of artifacts introduced by the
analytical technique, the potential effects that these may have on
the data, or how to identify and treat them. Here we show how
some of these experimental artifacts can be identified and charac-
terized. We illustrate our approaches using a simple data set but
note that they could equally be applied to the QC replicates in a
study using pooled QCs. It is clear that there is no standard data pro-
cessing workflow for LC–MS-based metabolomics [8] or proteomics
[9], and that despite similar terminology (feature extraction, peak
finding, alignment, pre-processing, pre-treatment, normalization,
scaling, etc.) the meaning, usage order and actual algorithms differ

http://www.sciencedirect.com/science/journal/15700232
mailto:lyle.burton@sciex.com
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significantly [10]. Nevertheless, the need for ‘clean data’ [11–13],
i.e. lists of compounds or uniquely identified unknown peaks with
quantitative information such as response, is recognized as being
essential for effective MVA pre-processing and processing. Data
filtering or cleaning is usually performed on a per sample basis,
is typically limited to peak finding and background subtraction
to detect peaks with offsets, and, for some workers, may include
alignment and/or normalization.

As far as we are aware there are no reports of examining the
peak lists for cross sample effects, such as instrument artifacts, prior
to MVA although Fiehn [14] mentions the importance of checking
observed clusters following analysis and notes that observed cluster
patterns correlated with acquisition time may indicate instrumen-
tal effects. Artifacts may be removed by variable selection which is
often used as part of data analysis to reduce the dimensionality of
the data, simplify processing and interpretation [15], and improve
the classification/prediction performance of the statistical model
[16].

We argue that the presence of artifact peaks should be deter-
mined prior to any processing for a number of reasons. First, some
processing, such as normalization to biological factors, may obscure
the artifact pattern making it hard to detect later. Secondly, the
presence of artifacts may distort or overwhelm any sample sepa-
ration that might otherwise be revealed. Thirdly, the presence of
artifacts may indicate that the experiment or study is invalid and
should be repeated although, in many cases, artifact peaks can be
ignored or ‘rescued’ by appropriate treatment. Variable rejection in
this way can improve the performance of MVA and ease interpre-
tation; for example, Jonsson et al. [17] noted that the presence of
instrumental effects caused additional PLS components and made
interpretation harder, while Scholz et al. [18] found that the third
independent component, obtained from independent component
analysis of PCs, was related to acquisition order and represented
gradual instrument contamination. We recommend that artifact
evaluation include the use of unsupervised tools such as princi-
pal component analysis (PCA) [19,20] so that unexpected effects
can be detected.

2. Artifact types and manifestations

In general LC–MS artifacts are of two types:

1. Chemical noise, i.e. real peaks that are generated in the instru-

ment, or apparent changes that are instrument related, such as
ion suppression.

2. Apparent sample differences introduced by the experimental
protocol or the data processing.

One example of the second type has already been reported
[21]; in that study the parameters initially chosen for peak pick-
ing resulted in peaks being missed in some samples but not others
introducing apparent differences. We have observed experimen-
tal artifacts [22] in proteomics samples analyzed by “GeLC–MS”,
i.e. where samples are separated by 1D gel electrophoresis, each
strip cut into bands and the bands analyzed by LC–MS, caused by
slight differences in the position of the cut bands and hence the pro-
teins selected and analyzed. Similarly, we have found that incorrect
alignment can result in the same peak being incorrectly assigned
to two variables again resulting in an apparent difference. This has
been reported by de Groot et al. [23] who also described a method
for detecting and correcting the problem.

The focus of this report is artifacts of the first type that are
summarized in Table 1 and that have one of the following char-
acteristics:
. B 871 (2008) 227–235

1. Constant across all runs (background components in solvents,
etc.).

2. Suppression/enhancement that occurs at specific retention
times.

3. Trends that are dependent on the acquisition order.

Since the first type do not change between samples they will be
ignored by MVA, but it is still important to detect their presence
for two reasons: (1) they indicate that the analysis system, par-
ticularly the response, is not changing during the analysis, and (2)
normalization may change the pattern so that it appears significant.
Constant artifacts may be impossible to distinguish from real com-
ponents that do not change, but neither will have any effect on the
MVA results. Their removal is similar to variable selection [15,16]
and may improve later MVA performance or ease interpretation.

Suppression can be detected by determining variables that are
anti-correlated with variables which increase; if the retention times
are comparable, ion suppression must be suspected and the data
carefully examined. Similarly, ion enhancement should be sus-
pected in variables that increase when more intense peaks from a
different compound at the same retention time also increase. This
possibility underscores the need to carefully validate suspected
discriminating variables or biomarkers, ideally using a different
chromatographic system as recommended for quantitative anal-
yses [3].

The third class of artifacts all show changes that are dependent
on acquisition order and hence can be detected by examining the
response profile when the data points are arranged appropriately.
Manual examination is time consuming and error prone so auto-
mated, unsupervised (from the biological viewpoint) techniques
are desirable. Here we describe and illustrate several approaches
that we routinely use to detect artifacts so they can be removed
from the data set or treated in some other way.

3. Approaches to artifact detection

As noted, it is important that artifacts introduced by the analysis
system be detected prior to normalization to biological or sample
related parameters, otherwise they will be obscured. The presence
of invariant artifacts indicates constant system response so that
time related artifacts can be reliably detected from their profiles.
In our experience, normalization is generally not necessary for rel-
atively small batches of samples that can be acquired on the same

instrument at the same time, but is critical if these conditions are
not true.

The following summarizes a number of techniques that we have
found useful for detecting and characterizing artifacts; all are illus-
trated in the results section using a simple LC–MS data set.

3.1. Univariate analysis

Since we are looking for effects that depend on acquisition order,
we need a technique that can determine differences between sam-
ples acquired at the start of the data set and those at the end. If the
acquisition order has been randomized, the only systematic differ-
ence between these samples will be due to time related artifacts
and, if all real classes are roughly equally represented, class effects
should cancel out.

Although not statistically rigorous, we have found it useful to
create artificial sample classes for the first few (n) and the last few
samples in the set and to use a t-test to detect different or similar
variables that we then examine manually. A t-test is normally used
to determine if a given variable distinguishes two known groups
while here we assume that the groups are the same so that any
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Table 1
Summary of some significant artifacts, origins and manifestations in acquired data

Artifact Source Manifestation

1. Carry over Autosampler Incorrect measurement of
Might be exacerbated by r

2. Sample decomposition Autosampler Variables that change inte
Unstable compounds (var

3. Background components LC system Compounds present in the
In the absence of instrum

4. Contamination build up or wash out Entire system Variables that change in in
These compounds may co

5. Sensitivity changes MS Variables that decrease in
If the cause is instrument

6. Ion suppression or enhancement MS Variables that are decreas

7. Saturation MS Incorrect response for larg
May, in severe cases, appe

change must be due to the variable. The choice of n depends on
the need to represent the sample classes, ideally while restricting
the analysis to a few variables to maximize the difference between
our artificial classes. Further enhancement can be achieved if the
artificial classes contain samples that are known to be the same or
similar, for example, they are pooled controls analyzed periodically
during the study, from the same group or replicates.

3.2. Variable grouping

We have recently described [24] an unsupervised technique we
call principal component variable grouping (PCVG) that uses PCA
and processes the loadings data to find variables that are correlated
across the samples, i.e. we are using the samples to characterize
and group the variables as well as the reverse. Briefly, following
PCA, PCVG starts with the most significant variable (the one farthest
from the origin for Pareto scaled [11] data) and finds other variables
that are within a user specified angle of it in the n-dimensional
space defined by the selected PCs. These variables are then assigned
to the same group, and the process repeated using the next most
significant unassigned variable until all variables (typically above a
user specified threshold) have been assigned.

Group members have similar behaviour so those due to arti-
facts can be detected by examining their profiles to determine any
acquisition order or class dependent effects. We are able to treat all

group variables together so the behaviour of weak variables, if hard
to determine directly, can be inferred from the more intense group
members, and all members can be excluded from, or selected for,
further analysis in one step.

3.3. Visualization

Despite the power of MVA algorithms, visualization is often the
best and simplest way to detect trends in the data and recognize
unexpected events; two aspects are especially important in our
approach:

First, data points in graphs are depicted with symbols and labels
that can be edited by the user in a meaningful way, for example, we
often use filled shapes for post-dose samples and empty shapes
for pre-dose. This allows us to make changes to emphasize partic-
ular events such as acquisition time dependent phenomena that
are often more easily revealed by labelling the samples with their
acquisition index.

Secondly, we make extensive use of profile plots that show the
behaviour of a specific variable across all samples, and the ability
to switch the display order between acquisition index and sample
. B 871 (2008) 227–235 229

iable in sample(s) following a sample containing a large amount of that variable
ization if low-level samples follow intense ones

during the course of the analysis; can be mistaken for a change in response
) will decrease in time while the decomposition products will increase

nt, column, etc. that cause distinct peaks in the data
anges these will have a constant value across all samples

ty during the course of the analysis, often in a non-linear way such as sigmoidal
the autosampler, column or ion source

sity during the run
the ions observed may also change

increased in some samples because of the presence of intense co-eluting peaks

centrations because the dynamic range of the detection system has been exceeded
n intensity decrease

class. Profile plots can be used to directly examine the behaviour
of a few variables prior to MVA or to review specific variables of
interest following analysis.

4. Experimental

4.1. Data set

The concepts described here are illustrated using a simple data
set that was generated by taking two urine samples (referred to as
P and SB) from the same individual on the same day, and dividing
each into two aliquots, one of which was spiked with a standard
mixture comprised of minoxidil, safranin orange, buspirone, ver-
apamil, reserpine, and sex pheromone peptide at a concentration
of 100 pg/�L. Thus there were two spiked (P+ and SB+) and two
unspiked (P− and SB−) samples that were analyzed six times in a
randomized order by LC–MS on a QSTAR® Elite QqTOF (Applied
Biosystems|MDS Sciex, Toronto, Ontario, Canada). Samples were
diluted 1:5 (v/v) with buffer A comprised of 5% (v/v) acetonitrile
and 0.1% (v/v) formic acid in water. 5 �L of sample was injected
onto a Phemonenex Luna 5 �m C18 100 Å 150 mm × 3 mm column
equilibrated with buffer A and a linear gradient of 5% buffer A to
60% buffer B (95%, v/v acetonitrile; 0.1%, v/v formic acid in water)
over 25 min used to elute compounds from the column at a flow
rate of 250 �L/min. The column was regenerated by washing for

5 min with 100% buffer B prior to re-equilibration with 5% buffer
A. The mass spectrometer was scanned from 100 to 1000 amu in
positive electrospray mode with an accumulation time of 0.5 s.

To investigate the ability to detect and evaluate significant
changes in instrument performance (failure), a further 12 injec-
tions were performed with the declustering potential (DP) changed
as follows: 60 V (2), 80 V (2), 120 V (2), 180 V (2) and 240 V (4) where
the value in parentheses indicates the number of samples acquired
at each value. Altering DP to higher values induces fragmentation
prior to the mass analyzer so that the intensity of some variables
decrease while others increase; at the highest values all ions in
the observed mass range have been fragmented and no signal is
observed.

4.2. Data processing

Data was analyzed using the MarkerViewTM software [21,24]
(Applied Biosystems|MDS Sciex, Toronto, Ontario, Canada) which
performs feature extraction by peak finding for each sample, align-
ment using mass and retention time windows for the peaks, scaling,
MVA (PCA, PCA-DA and t-tests) and results visualization. The
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program also links back to the raw data so that differences can be
directly visualized in spectra or chromatograms.

With appropriate peak finding and alignment parameters a total
of 1503 peaks were generated from the complete data set (including
simulated failures) which was reduced to 1253 by requiring that
variables be present in at least two samples. These numbers include
all detected peaks, i.e. without de-isotoping, adduct removal, etc.

PCVG was performed using a small specially developed program
[24] that interacts with the MarkerView software to extract the data
and return the assigned groups. For this data we used three PCs, an
angle of 35◦, and required that a group have at least three peaks. The
only peaks considered were those where the length of the vector
joining the variable to the origin in the loading space was at least
0.02.

5. Results

PCA was performed using Pareto scaling and the resulting scores
and loadings plots are shown in Fig. 1. It is clear that PC2 separates
the spiked samples (P+ and SB+, filled circles) from the unspiked
(P− and SB−), and that there is some separation of the P (blue)

and SB (red) samples. However, PC1, which explains the bulk of the
variance, has some other cause arising from the variables that most
affect PC1, such as those in the red square.

Fig. 2 shows the same scores plot but with the samples labelled
according to acquisition index; the inset shows the small group of
peaks with most negative PC1 loadings. This simple change imme-
diately shows that PC1 is related to the acquisition order, implying
that there is some time dependent change, and that the later sam-
ples have the most negative PC1 values. The lower part of the figure
is the profile plot for the variables in the red rectangle in Fig. 1, also
in order of acquisition index, which shows that the effect is due to a
decrease in these variables (and an increase in variables with large
negative PC1 loadings—not shown). Note that the sample symbols
and labels are also used in the profile plot which shows that the
effect is probably instrument related since all classes are affected
similarly. Drawing this conclusion is facilitated by proper random-
ization and the use of technical replicates. In a real experiment it
would be necessary at this point to determine the implications of
this observation: is the study or experimental design still valid?
Can the data be used, perhaps by ignoring the affected samples
or variables, or by correcting their intensities in some other way,

Fig. 1. Scores (left) and loadings plots (right) obtained from PCA of the entire data set (12
SB−), those in the loadings plot indicate the isotope status of the variable. For variables ass
it is likely that these are very weak monoisotopic peaks. The red rectangle indicates the v
Fig. 2. Scores plot from Fig. 1 (top) with the samples labelled according to acquisition
order. The inset shows the detail for the groups of samples with the most negative
PC1 scores. The lower part of the plot shows the acquisition time order profiles
for the variables with highest positive PC1 loadings and PC2 loadings close to zero
(marked with a red rectangle in Fig. 1).

and will this retain sufficient statistical power? The profile plot also
helps here since it is apparent that each class is well represented by
unaffected variables, so simply ignoring the affected samples may
be adequate. In this particular case, since the source of the variation
is known to be the simulated instrument failure, ignoring the last
12 samples is acceptable although this may not always be true.

The results of PCA on the first 24 samples, containing 1157 peaks
in at least 2 samples, are shown in Fig. 3 with sample labels indi-
cating acquisition index. The PC1/2 scores plot (top left) shows that
PC1 separates the spiked samples (filled circles) from the unspiked,
and PC2 separates the P (blue) and SB (red) samples, although the
‘clusters’ are not as tight as might be expected from replicate anal-
yses. PC2/3 (lower left) shows that PC3 results from an effect that
is largely time dependent since the samples acquired later have the

53 variables). Symbols in the scores plot indicate the sample class (P+, SB+, P− and
igned to the ‘default’ class isotope information could not be found; at these masses
ariables most effecting PC1 only.
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Fig. 3. Scores and loadings plots for the samples excluding those where instrument failure was simulated. The two upper panels show PC1/2 and the lower panels are for
PC2/3. Sample symbols are as in Figs. 1 and 2 and the labels indicate acquisition index.
Fig. 4. Profile plots for “310.2/12.3” (lower panels) and “310.2/13.1” (upper) plotted in acq

Fig. 5. Time ordered profiles for two variables in Fig. 4 with PC3 loadings of opposite
sign. Symbols are as in Figs. 1 and 2.
uisition index order (left) and group order (right). Symbols are as in Figs. 1 and 2.

highest negative PC3 loadings, however the two P− samples with
acquisition indices 4 and 8 appear to be different. This underscores
the importance of technical replicates, since there is no biological
reason why these samples should be different to other members
of the P− group. The high PC3 scores for these samples is caused
primarily by the variable with the largest positive PC3 loading,
i.e. “310.2/13.1 (907)” (upper part of lower right panel) and might
arise from carryover from samples 3 and 7 which can quickly be
assessed from the time ordered profile plot. As shown in Fig. 4
(top left) the intensity of this variable in samples 3 and 7 is less
than in samples 4 and 8 indicating that carryover is not the cause.
This figure also shows the time ordered profile for a second vari-
able labelled “310.2/12.3 (908)” which is diametrically opposite in
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Fig. 6. Acquisition order profile plots for the four variables with the largest p-values (mo
Figs. 1 and 2.

Fig. 3, although the mass is the same. We note from the left pair
of plots in Fig. 4, that the behaviour of these variables is exactly
anti-correlated, a phenomenon that is more obvious from the group
ordered plots on the right side of the figure. We have observed that
this behaviour is almost always due to peak alignment resulting
from a poor choice of parameters or, as in this case, complex, noisy,
convoluted peaks (data not shown) that have been assigned to dif-
ferent retention times. Using a larger retention time merge window
(1 min cf. 0.4 min) in this case results in a single variable that is
present in all samples but greater in P, and samples 4 and 8 are in
line with the others.

Fig. 5 shows the time ordered profile plots for two other vari-
ables, one with a positive PC3 loading and the other with a negative
loading. Clearly these variables are changing over time and con-
tribute to the time dependence of PC3. It is important that they
have opposite trends since this shows that instrument response is

Fig. 7. Acquisition order profile plots for the three variables with the smallest p-values be
(top right). Symbols are as in Figs. 1 and 2.
st constant) between the first five and last five samples acquired. Symbols are as in

likely not the cause; given the length of the data acquisition (24 h)
it is possible that decreases arise from unstable compounds and
increases from the decomposition products, although compound
identification would be required to confirm this. Note that normal-
ization would have changed these profiles, potentially making the
behaviour unrecognizable. In this example neither variable shows
any class related trend so they can be safely ignored, but this may
not always be the case and in reality the profile for every variable
should be examined in order to determine whether the variable
should be kept, removed or treated in some other way. In situa-
tions with hundreds or thousands of variables this would be slow
and inaccurate so, as mentioned previously, we rely on t-tests and
PCVG to help.

The t-test is used to determine if a given variable separates two
classes, in this case ones that we have created to represent the first
few, A, and last few, B, samples acquired. The test returns a p-value

tween the first five and last five samples acquired. The 30th variable is also shown
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ate th
Fig. 8. Loadings plots for PC1/2 (left) and 2/3 (right) as in Fig. 3. The symbols indic
requiring that a group have three variables that are 0.02 from the origin.
which corresponds to the probability that the observed change
could be random. If, for a given variable, the p-value for the dif-
ference between A and B is very small the observed difference is
most likely real, i.e. the variable has changed, whereas a value close
to one indicates that the variable has not changed and therefore
does not separate the groups. Thus we perform the t-test using A
and B and examine variables that have p-values close to one as well
as those that are very small. Since we are interested in variables
that are present in the majority or all samples, we restricted the
test to variables detected in at least 23 (of 24) samples.

Fig. 6 shows the acquisition time ordered profile plots for the
four variables with the largest p-values, two of which (left panels)
combine a constant offset with class differentiation. Fig. 7 shows
the profile plots for the three variables with the smallest p-value
(most different) as well as the 30th variable (top right) which is
the first to show a general trend combined with class differen-
tiation. Altogether there are 32 variables with p-values less than
10−3.

Clearly using the t-test in this way can reveal artifacts that are
constant across the analysis or show a systematic change, but it does
not distinguish variables that combine this behaviour with class dif-

Fig. 9. Acquisition time order profile plots for the first fo
e automatically assigned groups using three PCs, an angle of 35◦ , and additionally
ferentiation; this must be determined manually. Artifact variables
without differentiation can often be rejected without damaging the
data, but the others should be retained; differentiating variables
with constant offsets (e.g. left panels in Fig. 6) will be correctly
handled by mean-centering, but those on a changing background
(e.g. top right, Fig. 7) will not be. Thus, it is not sufficient to define
p-value thresholds and reject variables without visual examination,
although this can be reasonably fast and the p-values do limit the
number of variables that must be manually examined. Further, the
t-test is supervised, i.e. we must define the ‘classes’ to be compared,
and we pre-selected variables appearing in 23 or more samples so
there are doubtless others with similar trends but low intensity
such that they are only observed in 22 samples (or fewer).

In contrast, PCVG finds all variables that share the same pattern
and, like PCA itself, reduces a large number of variables to a few
groups that can be treated together—rather than looking at thou-
sands of variables we look at just those groups. The technique uses
PCA, and so is unsupervised, but the groups returned contain vari-
ables in their original context so interpretation is much simpler.
For example, applying the technique to the data of Fig. 3 generated
just 14 groups that represented 579 variables (the other 578 in the

ur groups of Fig. 8. Symbols are as in Figs. 1 and 2.
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Fig. 10. Profiles for group 5, Fig. 8, ordered by acquisition time (upper) and by group, with acquisition time as a sub-order (lower). Symbols are as in Figs. 1 and 2.

group
Fig. 11. Profiles for group 11, Fig. 8, ordered by acquisition time (upper) and by

original data have low intensity or low variance, are close to the ori-
gin of the loadings plot and are rejected by our minimum distance

criterion). Fig. 8 shows the loadings plots from Fig. 3 (right panels),
but with symbols used to indicate these 14 groups. Detailed exam-
ination of all of these groups is beyond the scope of this report, but
relevant examples are given below.

Examination of Fig. 8 and the corresponding scores plots from
Fig. 3, suggests that group 1 is related to the spike and that group 4
is related to the difference between the P and SB samples, regard-
less of spike (left panel), while groups 2 and 3 (right panel) are
apparently related to the time-based change that PC3 depicts. Other
behaviour can also become apparent, for example, the left panel
shows that group 11 (purple triangles) appears to be anti-correlated
with group 1, i.e. it distinguishes spiked and unspiked samples but
with the opposite sense (higher in the unspiked). Fig. 9 shows the
time order profiles for the first four groups assigned in Fig. 8 from
which it is apparent that, as predicted, group 1 (bottom left) reflects
differences between the spiked and unspiked samples, group 4
(top right) distinguishes the P samples from the SB, and groups
2 and 3 are gradual changes in opposite directions corresponding
to decompositions that have little or no ability to distinguish the
classes. Fig. 10 shows profiles for group 5 which combines class dif-
ferentiation with a gradual change; in addition to acquisition time
, with acquisition time as a sub-order (lower). Symbols are as in Figs. 1 and 2.

order (upper), the data is plotted in group order with each group
sorted by acquisition time (lower) which in this case better reveals

the characteristics. As a final example, Fig. 11 shows similar profiles
for group 11 which is clearly higher in the unspiked samples than in
the spiked. In general, variables that distinguish samples because
of reduced intensity should be carefully examined to ensure that
this is not caused by ion suppression, i.e. that there are no large
peaks that co-elute with the species that appear to be reduced. If
this is not the case, the raw data should be checked to verify that
the peaks are present in the samples, and were correctly detected
and aligned. Here, there is no obvious explanation for the observed
behaviour although some of the six peaks in the group do show
altered mass profiles, possibly due to saturation effects.

6. Conclusion

For LC–MS-based metabolomics to reveal underlying biological
effects, other potential sources of variance must either be con-
trolled or detected and treated. Some can be avoided or minimized
by careful experimental technique, especially in sample collection,
processing and storage, but artifacts introduced by the analyti-
cal system may be unavoidable. Under some circumstances, for
example in the analysis of large sample batches requiring hours
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or days of analysis time, the combined effects of these untreated
artifacts may dominate sample separation. Artifacts such as back-
ground peaks introduced in the solvent that are constant across all
samples have little variance and hence will not influence separation
unless the intensity pattern is changed by normalization to a bio-
logical factor. Data treatment may also alter the profile of artifacts
that change during the analysis so that they are no longer easily
recognized. Hence we recommend that the presence of artifacts be
determined prior to other processing so that they can be assessed,
characterized and treated.

A variety of potential artifact sources are summarized in Table 1
and we have presented several tools and techniques that can
be used to identify the resulting variables. Those that remain
constant (background peaks) or change (decomposition, contam-
ination wash out or build up, sensitivity changes) can often be
identified using a t-test on artificial classes containing the first
and last few samples analyzed. The power of this approach can
be enhanced if the samples are known to be similar, for example
because they are controls or from the same class. Instrument sensi-
tivity changes can be ruled out if peaks with constant response are
present, while carryover is best detected using acquisition ordered
profile plots and carefully verifying the results from samples follow-
ing those containing large peaks. Randomization and inconsistency
in technical replicates can also help reveal carry over. Intense vari-
ables should be checked for other changes at the same retention
time; anti-correlated peaks may be the result of ion suppression

while correlated peaks may be due to ion enhancement. Suppres-
sion is often easier to detect and enhancement may be difficult
to distinguish from a real compound increase. This may not be
critical during biomarker discovery, but should be carefully val-
idated with different chromatographic conditions before usage in
other applications. Saturation effects may also be hard to detect, but
instruments tend to have known ranges within which the intensity
response is linear and values outside that range should be carefully
examined.

We have found PCVG to be a powerful tool for a number of
reasons, particularly the dimensionality reduction achieved by rep-
resenting many variables by a few related groups (in our example
14 groups were obtained from nearly 600 variables). All members
of a group share the same behaviour and can thus be characterized
together by assigning a common symbol in loadings plots and by
visualizing their profiles which, in addition to identifying artifacts,
may indicate other effects (such as diurnal variation, xenobiotic
metabolites, etc.) that the investigator can choose to pursue or
ignore [24]. Groups also assist interpretation since related species
(isotopes, adducts, unexpected fragments, etc.) will be present in
the same group and will additionally have the same retention time.
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Visualization of profile plots arranged in acquisition order and
with flexible label and symbol assignment is often a straightfor-
ward way of identifying unexpected effects and can be used to
examine variables directly or to review variables identified by the
other techniques.

We recommend that approaches similar to those described here
be applied to LC–MS data before response [6] or biological nor-
malization so that artifacts, which would otherwise change and
affect the analysis, can be detected. In many cases it is sufficient to
reject the variables without damaging the data but others should be
treated further before use. Discussion of tools appropriate to these
latter cases will be the subject of further reports.
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